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Received 8 April 1975, in final form 4 June 1975 

Abstract. The quantum mechanical analogue of the classical nonlinear system with the 
Lagrangian 

is shown to be exactly solvable and its energy levels and eigenfunctions are obtained 
completely. The symmetric version ( k o  = 0) of this model (obeying nonlinear transforma- 
tion laws with the coordinates q t ,  i = 1,2,3 parametrizing a projective three-sphere of 
radius 1/42 when i. > 0 and 141 d j . - ' ' 2 )  is the SU(2)@SU(2) chiral invariant Lagrangian 
in the Gasiorowicz-Geffen coordinates. The radial part of the classical equation of motion 
(in both the symmetric and non-symmetric cases) admits simple harmonic bounded solu- 
tions and the bound state energies of the quantized system show a linear dependence on 
the coupling parameter i. It is shown that the Bohr-Sommerfeld quantization procedure 
reproduces the form of the correct bound state energy levels while a perturbation theoretic 
treatment gives the exact energy expressions. Arguing along the lines of Velo and Wess 
that the Hamiltonian be invariant under the action of the underlying internal symmetry 
group, the ordering problem that arises in the quantum mechanical case is overcome. The 
results are in agreement with those of Lin, Lin and Sugano. 

1. Introduction 

Evaluation of the S matrix in perturbation theory for phenomenological Lagrangian 
models describing pion interactions presents formidable problems : the theory is non- 
renormalizable (Delbourgo et al 1969, Keck and Taylor 1973) : equivalent interactions 
possess highly singular terms (proportional to S4(0), see eg Gerstein et al 1971) and there 
are new ordering problems that have to  be taken care of (Charap 1973a). An important 
feature of these chiral models is the nonlinear transformation law for the field operators 
under the action of the internal symmetry group (Gasiorowicz and Geffen 1969). 
Simplified versions of these models in zero-space dimensions which retain the above- 
mentioned transformation properties are of interest in this connection. Besides having 
an intrinsic value, these models enable one to  understand certain basic problems more 
clearly, eg the validity of the perturbation theory, the structure of matrix elements of 
field operators, the ordering problems arising from the derivative interaction terms, etc. 
Some work along these lines has already appeared: Vel0 and Wess (1971) have investi- 
gated a model in the Weinberg coordinates-the symmetric model by group theoretical 
methods and a non-symmetric one by perturbative methods, since it was not amenable 
to  exact solution ; Charap (1973b) has studied a model with tangential parametrization 

t Present address : Research and Development Wing, Bharat Heavy Electricals Limited, Hyderabad, India. 
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in the massless case to obtain the energy eigenvalues and eigenfunctions ; Andreev (1973) 
has considered a classical 0 model. Recently we have solved (Mathews and Lakshmanan 
1975) exactly the quantum mechanical problem of the isoscalar version of the SU(2) 0 
SU(2) chiral model in the Gasiorowicz-Geffen coordinates (Delbourgo et a1 1969) with 
the Lagrangian 

Our main objective here is to present the solution of the quantum mechanical problem 
of this isotriplet model ( 1 )  with all the three degrees of freedom included and the sym- 
metry breaking term ( k ,  # 0) also added. 

The important feature of this model is that it is exactly solvable, even in the non- 
symmetric case. The classical bound state solutions are simple harmonic : the quantum 
mechanical bound state energy expressions show a simple linear dependence on the 
coupling parameter and perturbation theory is valid and the Bohr-Sommerfeld 
quantization reproduces the form of the exact bound state energy level expressions. 
The plan of the paper is as follows. We solve in 9 2 the classical equation of motion of 
the system (1) and show that the radial oscillations are simple harmonic. We then use 
a modified Bohr-Sommerfeld quantization rule to obtain the approximate bound state 
energy levels. We obtain in 4 3 the unique quantum Hamiltonian for the system ( I )  by 
imposing the invariance of the Hamiltonian under the action of the chiral SU(2) 0 SU(2) 
group for the massless ( k ,  = 0) case. This Hamiltonian contains even in this massless 
case a purely coordinate-dependent non-polynomial term. In the appendix we prove 
that this extra term is exactly equivalent to the one that is obtained from the general 
theory of Lin er al( 1970), where the consistency between the Lagrangian and Hamiltonian 
formalisms is the main criterion. In 5 4, the Schrodinger equation is solved for both the 
bound states and continuum states. The solutions are shown to have the correct j, + 0 
limit. Section 5 gives a brief discussion of the perturbation theoretic result in comparison 
with the exact one. 

2. Classical solutions and semiclassical quantization 

The Euler-Lagrange equation of motion of the system (1) is 

With the introduction of the polar coordinates 

41 = 4 sin 0 cos cp 

q2 = q sin 0 sin cp 

q 3  = q cos 0 

equation ( 2 )  separates out into the following : 

q2 sin2B@ = C, = constant 

y4B2 + C:/sin26 = C: = constant 

(3) 
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and 

Integrating equation (6 )  once, we have 

4’ k, 1 c; 
l-I.q2 2 1 4 4 2  q 2  

+--+- = C3 = constant. (7) 

The case C2 = 0 corresponds to the isoscalar case considered (Mathews and Lakshmanan 
1974) by us previously. By proceeding along the lines of Mathews and Lakshmanan 
(1974) we can easily show that the periodic solutions to the radial equation (7) are given 
by 

q(t)  = ~ [ 1  - p  ~ i n ~ ( w t + ~ ) ] ’ ’ ~  ( 8 4  

where 

and 

with 

where 

We can easily see that (when E. > 0) the range of these periodic solutions is such that 
0 < A d 
(which is not included in the underlying SU(2) 0 SU(2) manifold) one obtains aperiodic 
motions. 

If we consider also the values of Iq(t)l exceeding this range 

The canonically conjugate momenta for the Lagrangian (1) are 

2Gl ‘ 4 )  
1 -2q 

p = q+- 2 4  

so that the classical Hamiltonian becomes 
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To find the approximate bound state energies by semiclassical methods we proceed as 
below. Using the expressions (4) and (5) in (1 1) we have 

On substitution of the periodic solution (8) in (12) we obtain the classical energy ex- 
pression to the system (1) as 

Then assuming 

C, = mh, c: = ( 1 + & 2 h 2  (14) 
we apply the Bohr-Sommerfeld quantization rule for the radial part. We then obtain 
from the rulet 

pr dr = (nr++)lz (n,  = 0, 1,2, .  . .)  

that 

Or we have 

Then after some simplification we obtain 

8 w 
$ p r  dr = Iln-wAZ(l - p ) I 1  - T j ( l  /. -iA2)[1 -/1A2(1 - p ) ] I 2  (171 

where 

and 

Then equation (1 7) becomes 

So the approximate energy level expression from (13) and (19) becomes 

(20) En, , [  = ( 2 4  + I +  &”’h + i;L(2n,+ I +  $)’h2. 
Later in 4 4 we find that this expression closely approximates the exact one. 

t The factor f h  on the right-hand side of (15)  is added to obtain the correct i -+ 0 limit. 
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3. The quantum Hamiltonian 

We now obtain a unique quantum Hamiltonian for the classical system (1) by requiring 
the invariance of the Hamiltonian in the symmetric case ( k ,  = 0) under the action of the 
chiral SU(2) 0 SU(2) group, a procedure that was adopted by Velo and Wess (1971). 
We may easily show that the nonlinear transformation under which the Lagrangian (1)  
with k ,  = 0 is invariant (apart from the rotations in the isotopic space) is 

q + q' = q+6q (21) 
where 

6q = (1 -%qZ)"2a. 

Here a is a constant infinitesimal vector. This is obtained by taking the most general 
form of 6q as 

6q = f ( q 2 ) a + W ) ( a  - 4)q+g(q2)(a x 4)  

and solving forf, g and h.  By Noether's theorem we then have that the generator which 
induces the nonlinear transformation (21) is 

where p ,  are the canonically conjugate momenta. To go over to the quantum mechanical 
case we assume as usual that pi and q j  are non-commuting operators in the Hilbert 
space obeying the commutation relations [qi, p j ]  = ih tilj, etc and that quantum mechan- 
ical operators such as Fi and H should be properly symmetrized to ensure Hermiticity. 

The symmetrization of Fi poses no problem and is uniquely given by 

Fi = f[( 1 - iq2)1'2pi + pi( 1 - Aq2)"2]. (24) 

On the other hand there are a number of possible ways by which the classical Hamilton- 
ian H = *[p2 - Ab. q)*] may be symmetrized ; they differ from each other by coordinate- 
dependent terms. However the imposition of chiral invariance on the quantum system 
restricts the choice of the Hamiltonian to a unique one. 

Now the angular momentum generators corresponding to rotations in isospace are 
given by 

( 2 5 )  J .  = E.. q .  
i r j k  j P k .  

Then after some algebra we may show that 

We also have the following quantum transformation laws : 
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Thus? J i  are the triplet generators of the parity conserving isospin subgroup, while 
2- 1'2Fi are the pure chiral generators. We also note that the underlying group is either 
SO(3,l) or SO(4) depending on whether 3. < 0 or 3. > 0 (see equation (26b)) .  The two 
Casimir operators in both the cases are given by 

1 
C, = y(FiF,  + i .JiJi)  

A 

and 

C2 = FiJ,  = 0.  

In the evaluation of C ,  and C 2  we have made use of equations (24) and (25) and straight- 
forward algebra. We now observe that the expression inside the large parentheses of 
equation (28a) is a possible symmetrization$ of the corresponding classical Hamiltonian 
(1 1) with k = 0. Thus we identify our quantum Hamiltonian as 

H = - p2-E.(p.q)(q.p)+- . 
2 l i  4 1 - Aq 

We note that this quantum Hamiltonian contains a non-polynomial coordinate- 
dependent term even in the absence of symmetry breaking terms. It is interesting to 
note at this point that the Hamiltonian expression (29) agrees exactly with the one that 
is obtained from the general theory of Lin er a1 (1970) for quantum mechanical velocity- 
dependent interactions where the consistency between the Lagrangian and Hamiltonian 
formalisms is insisted upon. The proof is given in the appendix. In this later theory the 
procedure is to find an equivalent velocity-independent Lagrangian where both the 
Lagrangian and Hamiltonian formalisms are equivalent. 

4. Solutions of the quantum system 

We assume the appropriate quantum Hamiltonian of our system (1) including the mass 
term ( k  # 0) in lieu of our discussion in 9 3 to be 

t In the classical case, one replaces the commutators by Poisson brackets. 

as 

H = i { a [ p , ( l  -Lq2)' ,2px1-i .q2)"2+(1 -E.q2)"2pXl-,i92)1 2p ,+p , (1 - i , q2 )p ,+ (1  -2.9')' 'p'(1 -2.q')' '1 

The classical Hamiltonian H = fCp2 -E.@. 9)'] = f{p2(1 -h7')- i . [ -p29'  +@.  q)'];  may be symmetrized 

+ji . (p292+q'p')-4p * 4) (9  .PI}. 

Rearrangement of this expression results in equation (29). 
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where we have replaced the factor (ko+$d2h2) by k .  With the replacements? 

and 

where L is the usual angular momentum operator 

L = -=[sin h2 $&( sin R / )  +<] 
dB Fq 

and assuming that the wavefunction 

(33)  

the radial part of the time-independent Schrodinger equation HY = E Y  becomes 

Now with the substitutions 

A q 2  = t and x = (1 - t)-l”R(t)  

equation (35) reduces to the form 

R = 0. (37) ) ( k 1 )  
1 l(l;l)] 

ALh2 4 1 - t  
d2R 
dt2 2 -  

t(l-+-+(L - __-__ 

One may notice the close connection of this equation to  that of the Schrodinger equation 
of a one-dimensional Poschl-Teller potential hole (Flugge 1972, p 81). Now with the 
substitution 

R(t) = t””(1 - t)”2f(t) 

t (1-  t ) f ” +  [p  ++-(p + v + l)t]f’+$[p2 - ( p  + \])*If = 0. 

(38) 

(39) 

equation (37) becomes 

Here 

v = -+- 1 Jk 
2 Ah 

p = (/+ 1) 

and 

t This corresponds to the normalization Y*Y d3q = 1. I f  one demands a group invariant normalization 
I q*qg1j2 d3q = 1, then one makes the replacement pi = - ih at -$ih(ln g ) , 8 .  Then Y and 9 are connected 
by the relation Y = g1’4’%’. Here g = det(gtj), the determinant of the metric. For details see Charap (1973a). 
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The general solution to this hypergeometric equation (39) is 

f = AF(a, b ;  C ;  t )+  Bt’-‘F(a+ 1 - C, b+ 1 - c ;  2 - C ;  t) (41) 
where 

a = 3 p + v + p )  (424  

and 
c = ( v + & .  

We shall consider the 1, > 0 and i < 0 cases separately in what follows. 

4.1. Case (1): E. > 0 

In this case the range of q is divided into two regions : 
(i) Region I :  0 < q < 2-1’2 ( O < t <  1) 
(ii) Region 11: n < q < a  ( l < t < a = ) .  - 1 ’ 2  

Applying the boundary conditions to the radial part of the wavefunction in the 
regions I and I1 separately (with the aid of equations (34), (35), (40)-(42)), the eigenvalues 
and eigenfunctions are obtained. We observe that (i) when p is real in equation (40c) 
one obtains a discrete set of bound state solutions and (ii) when p is imaginary we obtain 
a continuous spectrum of states representing the scattering solutions. 

4.1.1. p real. In region I considering the solution (41) we find that the second part of the 
solution on the right-hand side is always singular at t = 0 (because 1 - c = - k”2/, ih < 0). 
So we choose the constant B to be zero, in which case the remaining part of the solution 
(41) is well behaved at t = 0. However at t = 1 this remaining part is singular, in 
general. To  see this we make use of the transformation formula 2.(10-4) of Erdeyli et a1 
(1953) which connects the hypergeometric functions with arguments t and (1 - t ) .  One 
finds that under this transformation the solution contains two pieces one of which is 
singular at t = 1. The one and only situation in which this singular piece vanishes is 
when 

b =  -n, or p2  = ( ~ + v + 2 n , ) ~  (n, = 0, 1 , 2 , .  . .). (43) 
This is because one of the r functions in the denominator of the above-mentioned 
singular term becomes infinite. Making use of the relations (40) for p, v and p,  we obtain 
the bound state energy levels to  be 

En,.(  = (2n,+1+3)k1’2h+$Ah2[(2n,+1)2+3(2n,+1)] .  (44) 
We may easily show that in the region I1 no non-trivial solution exists. Thus the 

correct bound state wavefunction corresponding to the discrete energy levels is 

1 

4 
w, Q 2 4 0 )  = -x(q)Yt,(6 cp)  

= A(1 - , iq2)bV-*qP-lF(+p+tv+Sp,  - n  r )  . p + + ;  Aq2) 

x X m ( &  40) (0 < q < i- 1’2) (45a) 

= o  (q  2 i- 1’2) (45b) 
where the parameters v, p and p are as defined in equation (40). 
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The reduction to the 3, -+ 0 spherical harmonic oscillator limit may be performed 
as below. As the energy level expression (44) shows the correct 2 = 0 limit, we consider 
only the limiting form of the wavefunction (45). In this limit from (45a) we observe that 
q opens out and fills out the entire range 0 < q < cc. Now the expression 

lim ( 1  - i q Z ) + ” - f  = (1 - i q 2 ) ( J k )  2j.h 2 exp[ - (k”2/2h)q2] 
i. -+ 0 

and further we have the relations b = - U ,  and ct = g p + v + p )  h k1’2/Rh -+ cc in the 
limit /I -+ 0. Also 

Now using the formula (Erdeyli 1953, p 248) that 

lim F(a,  b ; c ; z/a) = O(b, c ; Z )  (46) 
a + %  

where O is the confluent hypergeometric function in the Humbert symbol, we have 

lim F ( i p + ) v + i p ,  - n r ; p + + ; i q 2 )  = O(-nr,  I + $ ; ( k ” 2 / A ) q 2 )  (47) 
1-0 

and equation (45) becomes 

Iim Y(q, 6, cp) = Aoq’ e~p[-(k”~/2h)q~]O(-n, ,  I + ; ;  (k”2/h)q2~,(0. cp) (48) 
1 - 0  

where A .  is the 2 -+ 0 limit of the constant A .  This is in agreement with the usual 
spherical oscillator wavefunction (see for example, Flugge 197 1, equation (65- 12)). 

Now the energy levels corresponding to the SU(2) @ SU(2) symmetric limit are 
obtained by putting k ,  = 0 in equation (44) as 

E,,,f (symmetric) = )E.h2[(2n, + I ) 2  +4(2n,+ I ) + $ ]  

and the corresponding wavefunctions are given by 

A ( k o = O ) ( l  - i . q2 ) ‘14qfF(I+2+n , ,  - n r ;  I + + ;  ;q2)qm(e, cp) 
(0 < q < i- 1’2) 

1 0  ( q  2 A- 1’2) 

y(q, e,  cp)l ko = 0 = 

4.1.2. p imaginary. In this case there exists no regular solution in the region I. However 
in region I1 a well behaved solution exists (with A ,  B # 0 in equation (41)) and p = io 
(o real). This continuous spectrum of solutions corresponds to energies ranging below 
the bound state minimum down to - cc. One may also notice that in the corresponding 
classical situation aperiodic motion (with negative energies) exists with amplitudes 
exceeding the value A-’’’. We also note that this region lies outside the manifold of the 
SU(2) 0 SU(2) group. 

4.2.  Case ( 2 ) :  E, < 0 

In this case the boundary conditions for x(q) are to be applied at q = 0 and q = cx). 
Then the analysis proceeds in an analogous manner to the previous case and the bound 
state levels are given by 

(490) En,.! = (2n,+ I+$)k”2h -+1i([(2nr+ 1)’ + 3(2nr + 4]h2 
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and the corresponding radial eigenfunctions are given by 

x(q)  = A'(l  +l~.1q2)* ' -+q~F(a ,  b ;  c ;  -libiq2) (0 < q G x). (49b) 

These states belong to the case p2 > 0 in equation (40) and there exists only a finite 
number of bound states N ,  where N is the nearest integer to (v+p) .  

When p is pure imaginary both the constants in (41) may be nonzero. The cor- 
responding solutions represent the scattering states having energies up to  + x and 
contain the energy region not covered by the discrete spectrum. Finally, the reduction 
to the l i l  -, 0 limit is identical to the previous case. 

5. Discussion 

We have solved completely the quantum dynamics of a chiral Lagrangian model with 
non-polynomial (symmetry breaking) interaction wherein all the three degrees of 
freedom have been included. The bound state energy levels are shown to be of the form 

E ,  = ( n + 3 ) k ' / 2 A + ~ 3 . h 2 ( n 2 + 3 n )  ( n  = 2n,+I). (50) 

An interesting question in the context of field theory would be how approximate methods 
perform in comparison with the exact one. We have already seen that the Bohr- 
Sommerfeld semiclassical quantization procedure reproduces the form of the bound 
state levels correctly to within a constant (apart from the fact that k ,  appears instead of k ) .  
More interestingly a perturbation theoretic procedure, by taking the three-dimensional 
harmonic oscillator as the unperturbed system, would also reproduce the exact results 
at least up to the order ,I2 to which we have carried our calculations for the first few low 
lying levels. The procedure is to treat the term 

as the perturbed part of the Hamiltonian and then rewrite (51) in terms of the set of 
operators A ,  and AA (m  = - 1,0, 1) (see Messiah 1968, p 458) where 

1 1 
A ,  = U ,  and A - ,  = -(a,+ia,). (52) 

J2 
A - -(ux-iay), 

l -  J 2  

We have verified explicitly that for the first three ( n  = 0, 1,2) low lying levels the ex- 
pression obtained from perturbation theory coincides with the exact one (50) up to 
order i.' (beyond which also one would expect the same thing to happen). The explicit 
calculations of s wave states (1 = 0) to  this effect have been given in Mathews and 
Lakshmanan (1975) and the proof for the other I states is similar, so we refrain from 
giving the details here. 

Another interesting possibility is the comparison of scattering cross sections (as the 
actual solutions are known in the present case) computed from this model with experi- 
mental results. Finally it would be of interest to investigate the full field theoretic case 
of this model in perturbation theory. It is natural to  expect that some of the simplicities 
of this specific model will also be carried over to  the more complicated interacting field 
case. Investigations are in progress along these lines. 
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Appendix 

In this appendix we show the equivalence of our quantum Hamiltonian (29) to the one 
that is obtained from the theory of Lin et a/ (1970). Their theory states that for Lagran- 
gians of the form 

the proper quantum mechanical Hamiltonian satisfying the canonical equation of 
motion would be 

where 

For our system (1) we have 

so that 

f i j (q)  = 6ij -2*qiqj .  

Then it is easy to see that 

and 

So we have 
3 1 A2y2 Z(q)  = 
2 41-Aq2 

Then substituting this in (A.2) and using the fact that 

= 4 t f i j p j  + P j f i j )  

(A.lO) 

( A . l l )  
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we find that 

1669 

(A.12) 

and hence the result. 
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